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Abstract

We describe a multiresolution curve representation, basedavelets, that
conveniently supports a variety of operations: smoothirayeve; editing
the overall form of a curve while preserving its details; appbroximating
a curve within any given error tolerance for scan conversiva present
methods to support continuous levels of smoothing as wellrast manip-
ulation of an arbitrary portion of the curve; the control pigi, as well as the
discrete nature of the underlying hierarchical repreg@rtacan be hidden
from the user. The multiresolution representation require extra storage
beyond that of the original control points, and the alganghusing the rep-
resentation are both simple and fast.

CR Categories and Subject Descriptorst.3.5 [Computer Graphics]: Com-
putational Geometry and Object Modeling — Curve, Surfag#idSand
Object Representations; I.3.6 [Computer Graphics]: Mettagl and Tech-
nigues — Interaction Techniques.

Additional Key Words: curve compression, curve editing, curve fitting,
curve smoothing, direct manipulation, scan conversioweies.

1 Introduction

A good representation for curves should allow for flexibléiad, smooth-
ing, and scan conversion. In particular, a representatiorctirves should
support:

o the ability to change the overall “sweep” of a curve while maining its
fine details, or “character” (Figure 3);

¢ the ability to change a curve’s “character” without affectits overall
“sweep” (Figure 6);

¢ the ability to edit a curve at any continuous level of detalipwing an
arbitrary portion of the curve to be affected through dineetnipulation
(Figure 4);

e continuous levels of smoothing, in which undesirable fesglare re-
moved from a curve (Figure 2);

e curve approximation, or “fitting,” within a guaranteed mamim error tol-
erance, for scan conversion and other applications (F&8i@nd 9).

In this paper, we show howraultiresolutioncurve representation can pro-

no extra storage beyond that of the originalcontrol points, and the algo-
rithms that use it are both simple and fast, typically lineat: .

There are many applications of multiresolution curvesludimg computer-
aided design, in which cross-sectional curves are fredyieséd in the spec-
ification of surfaces; keyframe animation, in which curveswgsed to control
parameter interpolation; 3D modeling and animation, inchlfbackbone”
curves are manipulated to specify object deformationglgadesign, in

which curves are used to describe regions of constant colexture; font
design, in which curves representthe outlines of charsged pen-and-ink
illustration, in which curves are the basic elements of thisffied piece. In
all of these situations, the editing, smoothing, and apiprakion techniques
we describe can be powerful tools.

1.1 Related work

Some of the algorithms supported by multiresolution cuawescompletely
new, to our knowledge, such as the ability to edit a curve gtcamtinuous
level of detail, and the ability to change a curve’s chanastthout affecting
its overall sweep. However, the majority of applicationsatéded in this
paper have already been addressed in one form or anothaoulgh the
algorithms we describe compare favorably, in and of themesewith most
of this previous work, it is the convenience with which theltinesolution

representation supports such a wide variety of operatioaisrhakes it so
useful. Here we survey some of these previous techniques.

Forsey and Bartels [13] employ hierarchical B-splines to adslthe prob-
lem of editing the overall form of a surface while maintaigiits details.

Their original formulation requires the user to design aplex hierarchy

into the model. In later work [14], they describe a methodémursively fit-

ting a hierarchical surface to a set of data by first fitting arse approxima-
tion and then refining in areas where the residual is large @bnstruction
is similar in spirit to the filter bank process used in mukikution analy-
sis, as described in Section 2.1. One significant differéadhat in their

formulation there are an infinite number of possible repnéstions for the
same surface, whereas the multiresolution curve reprasenis unique for
a given shape. Fowler [15] and Witkin and Welch [28] also désaneth-

ods in which editing can be performed over narrower or broaelgions of

a surface; however, in neither of these works is there amattéo preserve
the higher-resolution detail beneath the edited region.

Curve and surface smoothing algorithms that minimize vezrienergy
norms have also been studied; these are surveyed in Hosodekaaser
[16]. One example is the work of Celniker and Gossard [7], Ivialu a fair-
ness functional is applied to hand-drawn curves, as web asitfaces. The
method we describe is really a least-squares type of smamtiihich is
much simpler but supports continuous levels of smoothiatitehaves quite
reasonably and intuitively in practice.

Many schemes for approximating curves within specified rewterances
have also been explored [2, 20, 23, 27]. Most of this reselaastcentered
on various forms of knot removal for representing curve<igffitly with

non-uniform B-splines. In this paper, we look at the very ficat con-

cern of producing a small number of Bézier segments thateqapate the
curve well, since these segments are the standard repaéiserfor curves
in PostScript [1], the most common page description langu@gr require-
ments are also somewhat different than those of most previorve-fitting

methods. In particular, for our application of scan conigrsve do not re-
quire any particular continuity constraints for the appnoating curve. Re-
laxing this condition allows for potentially much highemopression rates.

1.2 Overview
The next section discusses the theory of multiresolutiaiyesis, and devel-

ops a multiresolution representation for B-spline curvesti®ns 3, 4, and 5
describe how this representation can be used to supporeeffimoothing,
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editing, and scan conversion. Finally, Section 6 suggestesareas for fu-
ture research. The details of the multiresolution curvenfaiation can be
found in the appendices.

2 Theory of multiresolution curves

In this section, we discuss the theory of wavelets and negltilution analy-
sis, and we show how it can be applied to representing entipderpolating
B-spline curves.

2.1 Wavelets and multiresolution analysis

Wavelets are a simple mathematical tool that have found & wédiety of
applications in recent years, including signal analysij,[Bnage process-
ing [11], and numerical analysis [6]. In this section, wetskehe basicideas
behind wavelets and multiresolution analysis. Rather thasenting the
classical multiresolution analysis developed by Mall&j[2ve present here
a slightly generalized version of the theory, following lrslberyet al. [19],
that is more convenient for our application of representipgn curves.

Consider a discrete signal™, expressed as a column vector of samples
[ely..es ¢]". In our application, the sampleg could be thought of as a
curve’s control points ilR2.

Suppose we wish to create a low-resolution versigh—! of ¢ with a
fewer number of samples:.’. The standard approach for creating the
samples ofC™~! is to use some form of filtering and downsampling on
them samples of2™. This process can be expressed as a matrix equation

On—l Videld (l)
whereA™ is anm’ x m matrix.
SinceC™~! contains fewer samples thart, itis intuitively clear that some

amountofdetail is lostin this filtering processAf is appropriately chosen,
it is possible to capture the lost detail as another sigiat !, computed by

Dn—l BrC™ (2)
whereB™ is an(m — m’) x m matrix, which is related to matrixi™.
The pair of matricesi™ and B™ are calledanalysis filters The process of

splitting a signalC'™ into a low-resolution version'”~1 and detailD™ 1
is calleddecomposition

If A™ andB™ are chosen correctly, then the original sigh& can be recov-
ered fromC™~1 andD™~! by using another pair of matricé%® andQ",
calledsynthesis filtersas follows:

o Pncn—l + QnDn—l
Recoverings™ from ¢ ~1 andD™~1 is calledreconstruction

®

Note that the procedure for splitting™ into a low-resolution parC™~!
and a detail patb™~! can be applied recursively to the new siga&—1.
Thus, the original signal can be expressed as a hierarcloywafrtresolution
signalsC?,...,c"~1 and detailsD?, ..., D®~1, as shown in Figure 1.
This recursive process is known afilter bank

-1 1
Cn An Cnfl An Cn72 A CO
anl Dn72 DO

Figure 1:The filter bank.

Since the original signal’™ can be recovered from the sequerit® D°,
D', ..., D71, this sequence can be thought of as a transform of the orig-
inal signal, known as avavelet transformNote that the total size of the

1The more general theory described here differs from Mallat’s origoranulation
by relaxing his condition that the basis functions must beslates and scales of one
another.

transformc?, DO, ..., D»~1 is the same as that of the original sign4t,
SO Nno extra storage is required.

Wavelet transforms have a number of properties that make titeractive

for signal processing. First, if the filtest’ , B, P7, andQ’ are constructed

to be sparse, then the filter bank operation can be performcuickly —
often inO (m) time. Second, for many of the signals encountered in prac-
tice, alarge percentage of the entries in the wavelet tearséire negligible.
Wavelet compression methods can therefore approximateridieal set of
samples inC'™ by storing only the significant coefficients of the wavelet
transform. Impressive compression ratios have been regéot univariate
signals as well as for images [11].

As suggested by the treatment above, all that is needed féorpeng a
wavelet transform is an appropriate set of analysis ancheym filters47,

B, P7, and@’. To see how to construct these filters, we associate with
each signal’™ a functionf™ («) with » € [0, 1] given by

S (w) 4)

where® ™ (v) is arow matrix of basis functiog} (u), . .. , ¢y, (u)], called
scaling functionsin our application, for example, the scaling functions are
the endpoint-interpolating B-splines basis functions, Ivich case the func-
tion f™(w) would be an endpoint-interpolating B-spline cufve.

= ®"(u)C"

The scaling functions are required to tedinable that is, for all; in [1, n]
there must exist a matri®’ such that

oIt

— dI pPI (5)

In other words, each scaling function at leyel 1 must be expressible as
a linear combination of “finer” scaling functions at leyelAs suggested by
the notation, the refinement matrix in equation (5) turnstoudte the same
as the synthesis filteP? .

Next, letV'? be the linear space spanned by the set of scaling funciiéns
The refinement condition of? implies that these linear spaces are nested:
Vo c vt ¢ C V™. Choosing an inner product for the ba-
sis functions inV7 allows us to defindd’’7 as theorthogonal comple-
mentof V7 in V341, that is, the spac#’? whose basis function§’ =

(] (w),. .. 97 ()] are such tha®’ and ¥’ together form a basis

m—m/!
for V7+1, and everyp! (u) is orthogonal to every? (u) under the chosen
inner product. The basis functiorg (v) are calledvavelets

We can now construct the synthesis filigt as the matrix that satisfies
)

Equations (5) and (6) can be expressed as a single equattambgtenating
the matrices together:

g1

I QY

[e-1 | w=1] = @ [P | Q7] @)

Finally, the analysis filtersi? and B’ are formed by the matrices satisfying
the inverse relation:

A
BJ

= [0y

[<1>J—1 | qu—l} (8)

Note that[ P Qﬂ} and [ Al | BJ}T are both square matrices. Thus,

A
BJ

= [P @] )

from which it is easy to prove a number of useful identities:
AT Q)
A pl

BIPI
BIQY

= 0
PIAY + QIBY

(10
=1

where0 and1 are the matrix of zeros and the identity matrix, respecivel

2For simplicity of notation, we often omit the explicit depance on, whenwrit-
ing f™ and®™.
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2.2 Multiresolution endpoint-interpolating B-splines

In our application, we build a multiresolution analysis Bxspline curves.
In this paper, we restrict our attention to the common casebic B-splines
defined on a knot sequence that is uniformly spaced evenandyarept at
its ends, where its knots have multiplicity 4. Such B-spliaescommonly
referred to agndpoint-interpolatingubic B-splines. These curves are dis-
cussed in detail in many texts on computer-aided desigr416].

The multiresolution framework described in Section 2.1éspngeneral. To
construct oumultiresolution curvesrom endpoint-interpolating cubic B-
splines, we need to make several choices, as enumerated belo

1. Choose the scaling functiods’ (v) for all ;7 in [0, n].
This choice determines the synthesis filt¢t¢. For each level;, we
would like a basis for the endpoint-interpolating cubic Bisp curves
with 27 interior segments. The basis functions for these curveshaere
27 4+ 3 endpoint-interpolating cubic B-splines, which are refiralals
required by equation (5).

2. Select an inner product for any two functiopgindg in V7.
This choice determines the orthogonal complement spdcesie use

the standard fornff , g) = [ f(u)g(u)du.

3. Select a set of wavelels’ (v) that spaniv’7.
This choice determines the synthesis filt€}$. Together, the synthe-
sis filters P and @7 determine the analysis filterd? and B’ by
equation (9). We use the set ®f minimally-supportedunctions that
spani¥7.

Appendix A contains more details on the specific wavelets seand their
derivation. A similar construction has also been indepatigeproposed
by Chui and Quak [9]. Note that multiresolution construsi@an be built
for other types of splines as well, such as uniform B-splir@dsdnd non-
uniform B-splines with arbitrary knot sequences [21]. A neioeonstruction
applicable to subdivision surfaces is discussed by Louysiel.[19].

Note that because both the scaling functions and waveletgiconstruction
have compact support, the synthesis filtB¥sand@’ have a banded struc-
ture, allowing reconstruction i@ () time. However, a potential weakness
of our construction is that the analysis filte4s andB? are dense, which
would seemto imply af (2 )-time decomposition algorithm. Fortunately,
there is a clever trick, due to Quak and Weyrich [25], for perfing the
decomposition in linear time. The implementation of thégagithm is de-
scribed in Appendix B.

3 Smoothing

In this section, we address the following probleBiven a curve withn
control pointsC, construct a best least-squares-error approximating eurv
with m’ control pointsC’, wherem' < m. Here, we will assume that both
curves are endpoint-interpolating uniform B-spline curves

The multiresolution analysis framework allows this prahléo be solved
trivially, for certain values of» andm’. Assume for the moment that =
27 + 3andm’ = 22’ + 3 forsome nonnegative integefs < ;. Then the
control pointsC’ of the approximating curve are given by

ol = ANt 0
In other words, we simply run the decomposition algorithexjascribed by
equation (1), until a curve with just’ control points is reached. Note that

this process can be performed at interactive speeds forradaaf control
points using the linear-time algorithm described in Appigii]

One notable aspect of the multiresolution curve repres$ientss its discrete
nature. Thus, in our application it is easy to construct apjpnating curves
with 4, 5, 7, 11, or any2’? + 3 control points efficiently, for anynteger
level 5. However, there is no obvious way to quickly construct cerifeat
have “levels” of smoothness in between.

The bestsolution we have foundis to defifes@tional-leveturvef 7+t (v)
forsomedr<t<trminterms of allinearinterpolation between its two nearest

integer-level curveg? (u) and f3+1 (u), as follows:

JH (u) (1=0) /7 (u) + 7% (u)
= (1-8)® ()07 + 1T (u)cIH!

sz

(11)

These fractional-level curves allow for continuous lev@ismoothing. In
our application a user can move a control slider and see tive ¢xansform
continuously from its smoothest (4 control point) form, apits finest ¢

control point) version. Some fractional-level curves arewsn in Figure 2.

Figure 2:Smoothinga curve continuously. From left to right: the araj curve
at level 8.0, and smoother versions at levels 5.4 and 3.1.

4 Editing

Suppose we have a curg&® and all of its low-resolution and detail parts
cC,...,cr~1 andDC,..., D"~1. Multiresolution analysis allows for
two very different kinds of curve editing. If we modify soma-resolution
versionC? and then add back in the det&iw, Dv+1, ..., D™~1, we will
have modified the overall sweep of the curve (Figure 3). Orother hand,
if we modify the set of detail function®?, D7+1, ..., D™~ but leave
the low-resolution version§?, . .., C7 intact, we will have modified the

character of the curve, without affecting its overall swé€igure 6). These
two types of editing are explored more fully below.

4.1 Editing the sweep

Editing the sweep of a curve at an integer level of the wauedetsform is
simple. LetC™ be the control points of the original curyg®(u), let C7

be a low-resolution version af™, and letC7 be an edited version af’,
given by@ﬂ = C7 4+ ACY. The edited version of the highest-resolution
curveCn = ¢ + AC™ can be computed through reconstruction:

~

cr = C" 4+ AC"

o 4+ prpnTlL pitiacy

Note that editing the sweep of the curve at lower levels ofatimog ; af-
fects larger portions of the high-resolution curffe(«). At the lowest level,
when; = 0, the entire curve is affected; at the highest level, whes n,
only the narrow portion influenced by one original controiqads affected.
The kind of flexibility that this multiresolution editing las is suggested
in Figures 3 and 4.

In addition to editing at integer levels of resolution, itnatural to ascribe
meaning to editing at fractional levels as well. We wouleltke portion of
the curve affected when editing at fractional leye} ¢ to interpolate the
portions affected at levelsand; + 1. Thus, ag increases from 0 to 1, the
portion affected should gradually narrow down from thatefdl ; to that
of level ; + 1, as demonstrated in the lower part of Figure 4.

Consider a fractional-level cury& +¢ () given by equation (11). Let7+¢
be the set of control points associated with this curve;ithat

fJ+t(u) @J‘l‘l(u) cItt
We can obtain an expression fo¥+¢ by equating the right-hand sides of
equations (11) and (12), and then applying equations (5)3nd
(1—-nyPtlcs 4 oitt
pitl oo + tQH'l D?

(12)

citt —

Suppose now that one of the control poigé't is modified by the user.
In order to allow the portion of the curve affected to depend:an the
manner described above, the system will have to automigtizalve some
of the nearby control points Whejj"‘t is modified. The distance that each
of these control points is moved is inversely proportional:tfor example,
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(@ ® © @
Figure 3:Changingthe overall sweep of a curve without affectinghi@racter.

Given the original curve (a), the system extracts the ovemep (b). If the
user modifies the sweep (c), the system can reapply the (@tail

Figure 4:The middle of the dark curve is pulled. Upper: Editing at gee
levels 1, 2, 3, and 4. Lower: Editing at fractional levelsweén 2.0 and 3.0.

whent is near 0, the control points i@ +* are moved in conjunction so
that the overall effect approaches that of editing a singletrol point at
level j; whent = 1, the nearby control points are not moved at all, since
the modified curve should correspond to moving just a singterol point
atlevel; + 1.

Let AC7t¢ be a vector describing how each control point of the fraction
level curve is modified: the-th entry ofaC7+¢ is the user’s change to the
1-th control point; the other entries reflect the computed ements of the
other control points. Rather than solving fa€'7 +¢ explicitly, our approach
will be to break this vector into two components, a veatr? of changes
to the control points at level, and a vectonD?J of changes to the wavelet
coefficients at levejf:
ACITE = pItL A 4 QI ADY (13)
Next, defineaCy*¢ to be the user’s change to the control points at level
j + t, that is, a vector whosgth entry iSAcg"'t, and whose other entries
are 0. Define also a new vecta€’ as a change to control points at leyel
necessary to make the modified control p@iz.n‘*tt move to its new position.
We choose the vector that is O everywhere, except for one oremtries,
depending on the indeof the modified control point. By examining theh
row of the refinement matri®’+1, we can determine whether the modified
control point is maximally influenced by eithene control pointci"'1 or
two control pointsc] ™" and Cii
. +t +1 . .
setad] to beac! /Pl{k -Inthe latter case, we seft] anda¢] , to be

I+t 1o pgtl
Acy /2PMC .

at level; + 1. In the former case, we

Note that applying either change along;? + or ACY, would cause the se-
lected control point to move to its new position; howevee lditter change
would cause a larger portion of the curve to move. In order dveha
“breadth” of change that gradually decreasessgses from 0to 1, we can in-
terpolate between these two vectors, using some inteipolfainctiong(¢):

ATt = (1= g()) Pt AC? 4+ g(r)acitt  (14)
Thus,aCc7+¢ will still move the selected control point to its new positjo
and it will also now control the “breadth” of change as a fumeDf ¢.

Finally, equating the right-hand sides of equations (18i)@d), multiplying
with either47+1 or B7+1, and employing the identities (10) yields the two
expressions we need:

ACY (1—g())AaC? + g(t) A2tL aCIH!

(15)

Al = 9 pot1 st
¢

We now have the choice of any functigit) that allowsAD’ to increase
monotonically from 0 to 1. The functiog(t):=¢2 is an obvious choice that
we have found to work well in practice.

The changes to the high-resolution control points are teeanstructed us-
ing a straightforward application of equation (3):

ACT = pPrpnTllopitZ(pitlacy 4 @iTtADY) (16)
The fractional-level editing defined here works quite welpractice. Vary-
ing the editing level continuously gives a smooth and intaikind of change
in the region of the curve affected, as suggested by FiguBedause the
algorithmic complexity is jusO (m), the update is easily performed at in-
teractive rates, even for curves with hundreds of contraifso

4.1.1 Editing with direct manipulation

The fractional-level editing described above can be easitgnded to ac-
commodateadirect manipulationjn which the user tugs on the smoothed
curve directly rather than on its defining control points I3, 15, 18]. To
use direct manipulation when editing at leyel ¢, we make use of the
pseudo-inverse of the scaling functions at levedsd; + 1.

More precisely, suppose the user drags a point of the cf#¥é(u) to a
new positionf?+t(ug) + §. We can compute the least-squares change to
the control pointsa(? andaCy+t at levels; and; + ¢ using the pseudo-
inverseg®7)* and(®’ 1) T as follows:

(7 (uo))* 6
(®7F (uo))* 6

These two equations should be interpreted as applying to@iagension:
andy separately. That i should be a scalar (say, the change)nand the
left-hand side and the pseudo-inverses should both be cotuatrices of
scalars. The modified control points of the highest-regmtuturve can then
be computed in the same fashion outlined for control-poemipulation, by
applying equations (15) and (16).

AC?
Aé’]+t

17

Note that the first step of the construction, equation (1&), loe computed
in constanttime, since for cubic B-splines at most four ofehtries of each
pseudo-inverse are non-zero. The issue of finding the paeawedueu, at
which the curve passes closest to the selection point is lestuglied prob-
lem in root-finding, which can be handled in a number of way&.[th our
implementation, we scan-convert the curve once to find itarpater value
at every illuminated pixel. This approach is easy to implamand appears
to provide a good trade-off between speed and accuracy fortaractive
system.

For some applications, it may be more intuitive to drag orhilga-resolution
curve directly, rather than on the smoothed version of threeun this case,
even when the curve’s display resolution is at its highestllgét may still
be useful to be able to tug on the curve at a lower editing te®al. In this
way, varying levels of detail on the curve can be manipulatedragging a
single point: as the editing resolution is lowered, more @ode of the curve
is affected. This type of control can be supported quitelghgisettings to
be the change in the high-resolution curve at the dragget §8i(« ), and
using the same equations (17) above.

4.1.2 Editing a desired portion of the curve

One difficulty with curve manipulation methods is that theffect often
depends on the parameterization of the curve, which doeset#ssarily
correspond to the curve’s geometric embedding in an imaifiashion. The
manipulation that we have described so far suffers fromdhise difficulty:
dragging at a particular (possibly fractional) levek= ; + ¢ on different
points along the curve will not necessarily affect constangth portions of
the curve. However, we can use the multiresolution editmgtiol to com-
pensate for this defect in direct manipulation, as followigre 5).

Let i be a parameter, specified by the user, that describes thredésigth
of the editable portion of the curve. The paramétean be specified using
any type of physical units, such as screen pixels, inchepearentage of
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(a) Non-uniform pararameterization. (b) On left, change is narrow.

(d) Equal-breadth changes.

Figure 5:Curve (a) has a parameterization thatis non-uniform witsprect to

its length. Direct manipulation on the left part of the cu(@ affects a much
smaller fraction of the curve than does direct manipulatdthe same level
in the middle (c). The last figure (d) shows that a specifiectiva of the curve
can be edited, with the system determining the appropriiteng level.

the overall curve length. The system computes an appregditing leve¥
that will affect a portion of the curve of abolstunits in length, centered at
the pointf™(wg ) being dragged.

We estimate? as follows. For each integer-level editing resolutignet
hJ(ug) denote the length of " (u) affected by editing the curve at the
point f™ (ug). The lengtth? (uo ) is easily estimated by scan-converting the

curve f™(u) to determine the approximate lengths of its polynomial seg-

ments, and then summing over the lengths of the segmentdeffevhen
editing the curve at levej and parameter position,. Next, definej_
andjy to be, respectively, the smallest and largest values fof which
h?=(ug) > h > h?+(ug). To choose the editing levé| we use linear
interpolation between these two bounding levelsandy :

h — R+
SR ¥Ry
Finally, by representing in terms of an integer level and fractional off-
sett, we can again apply equation (17), followed by equationyh8 (16),
as before. Though in general this construction doegpnetiselycover the
desired portiork, in practice it yields an intuitive and meaningful control.
Figure 5 demonstrates this type of editing for a curve witheatremely
non-uniform geometric embedding.

4.2 Editing the character of the curve

Anotherform of editing that is naturally supported by m@golution curves
is one of editing the character of a curve, without affecttagverall sweep.
Let C™ be the control points of a curve, and 8¢, ..., c*~1, D%, ..,
D7~1 denote the components of its multiresolution decompasitimliting
the character of the curve is simply a matter of replacingekisting set
of detail functionsD/, ... ., D=1 with some new seb”, ..., D"=1, and
reconstructing.

With this approach, we have been able to develop a “curveacherlibrary”
that contains different detail functions, which can bericlb@ngeably applied
to any set of curves. The detail functions in the library hbgen extracted
from hand-drawn strokes; other (for example, procedurakhads of gener-
ating detail functions are also possible. Figure 6 dematesrhow the char-
acter of curvesin an illustration can be modified with the sdar different)
detall styles. The interactive illustration system usedreate this figure is
described in a separate paper [26].

Figure 6:Changing the character of a curve without affecting its gwee

4.3 Orientation of detail

A parametric curve in two dimensions is most naturally repreed as two
separate functions, one inand one iny: f(u) = (fz(u), fy(u)). Thus,
it seems reasonable to represent both the control p6ihtsnd detail func-
tions D7 using matrices with separate columnsdéandy. However, encod-
ing the detail functions in this mannerembeds all of theitlet¢he curve in
a particulatzy-orientation. As demonstrated in Figure 7, this repregerta
does not always provide the most intuitive control wheniedithe sweep
of the curve.

Original curve. Fixed xy-orientation. Detail relative to the tangent.

Figure 7:Editing the sweep of a curve using a fixeg-orientation of detail
versus orientation relative to the tangent of the curve.

As an alternative, we employ a method similar to that of Fpimed Bar-
tels [13] for representing detail with respect to the tarigerd normal to
the curve at a coarser level. Specifically, for computingréference frame
for orienting a detail coefficierttg, we use the tangent and normal of the
curve f7~1(ug) at a parameter position, corresponding to the maximum
value of the waveleg? (). Note that the curvg (u) is no longer a simple
linear combination of the scaling functiod® and wavelet¥7; instead, a
change of coordinates must be performed at each level ofigtieaction for
the wavelet coefficient®’. However, this process is linear in the number
of control points, so it does notincrease the computaticoaplexity of the
algorithm.

We have experimented with both normalized and unnormaiieesions of
the reference frame; the two alternative versions yieltedét but equally
reasonable behavior. Figure 6 uses the unnormalized tégérereas the
rest of the figures in this paper use normalized tangents.

5 Scan conversion and curve compression

Using “curve character libraries” and other multiresadutediting features,
it is easy to create very complex curves with hundreds orrgity thou-
sands of control points. In many cases (such as in this papesg curves are
printed in a very small form. Conventional scan conversi@thnods that use
all the complexity of these curves are wasteful, both in teafthe network
traffic to send such large files to the printer, and in termsefgrocessing
time required by the printer to render curves of many corgmhts within
a few square pixels. We therefore explore a form of curve aesgion that
is suitable for the purposes of scan conversion. The alyariequires an
approximate curve to have a guaranteed error tolerancermnstof printer
pixels, from the original curve. However, it does not reguany particular
continuity constraints, as are usually required in datajtapplications.

As discussed in Section 3, the simple removal of waveletfioierfits can
be used to achieve a least-squared, drerror metric between an original
curve and its approximate versions. However, for scan caiwe, anl.?
error metric is not very useful for measuring the degree pfagimation: an

approximate curve (v) can be arbitrarily far from an original curv€® ()
and still achieve a particuldr? error bound, as long as it deviates from the
original over a small enough segment. In order to scan carveurve to
some guaranteed precision—measured, say, in terms of raxuheviation

in printer pixels—we need to use &t norm on the error. There are many
ways to achieve such a bound. The method described hereipkesind fast
one, although methods with higher compression ratios atainty possible.

Lets? (with 0 < ¢ < 27 — 1) be a segment of the cubic B-spline curve

17 (u), defined by the four control pointg, ... ., c{+3. Note that each seg-
ments; corresponds to exactly two segmes$ ' ands} | atlevelj+1.
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Figure 8:Scan-converting a curve within a guaranteed
maximum error tolerance. From left to right, the figures
used 5%, 21%, 46%, and 78% of the possible number of
Bézier segments. Error is less than 1/400 inch.
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Figure 9:Same curves as above, but drawn at constant size.

Our objective is to build a new approximating curﬂm) for f(w) by choos-

ing different segments at different levels such thd{u) — ™ (u)||,, IS
less than some user-specifietbr all values ofu.

Assume, for the moment, that we have some funcEerBound(s’) that
returns a bound on th&®® error incurred from using the segmef’gt of
some approximate curvg’ () in place of the original segments ¢f* ()
to which it corresponds. We can scan-convert a curve to wiimy error
tolerance: by passing to the recursive routibeawSegmenthe single seg-
mentsg corresponding to the lowest-level cury@(«). This routine recur-
sively divides the segmentto varying levels so that theectilbn of segments
it produces approximates the curve to within

procedure DrawSegmerts? ):
if ErrBound(s?) < e then
Output segment’ as a portion off (u)

else
DrawSegmerits}+!); DrawSegmerits] )
end if

end procedure

To construct thé&errBound routine, letAf? be the B-spline-to-Bézier-basis
conversion matrix [4] for curves with? 4+ 3 control points, and lek? be a
column vector with entries! defined by

E} = M QDI (18)

The vectorE? provides a measure of the distance that the Bézier control

points migrate when reconstructing the more detailed catvevel; from

the approximate curve at levgl— 1. Since Bézier curves are contained

within the convex hull of their control points, the magniasbf the entries
of EY provide conservative bounds on approximations to the cdneeto
truncating wavelet coefficients.

A boundé? on theL* error incurred by replacing segmesit with its ap-
proximation at levelj — 1 is given by

§ < maXicrgita {||ei||2} 9)

TheErrBoundroutinercanithensberdescribedrecursively as follows:

procedure ErrBound(sg ):

if 7 = nthen
return O
else
1 1 1 1
return max{ErrBound(s}}*)+831", EmBound(s3 ! )+631 )
end if

end procedure

An efficient implementation of th&rrBound routine would use dynamic
programming or an iterative (rather than recursive) praredo avoid re-

computing error bounds. In practice, the routine is fastugimn its recur-

sive form that we have not found this optimization to be neags at least
for scan converting curves with hundreds of control points.

The approximate curvg(«) is described by a set of Bézier segments, which
we use to generate a PostScript file [1]. Note that the scamezsion algo-

rithm, as described, produces approximate cuﬂeg that are not evea@®
continuous where two segments of different levels abut&ime are only
concerned with the absolute error in the final set of pixetslpced, relax-
ing the continuity of the original curve is reasonable fasconversion. We
can achieve® continuity, however, without increasing the prescribeder
tolerance, by simply averaging together the end contrattsdor adjacent
Bézier segments as a post-process. We have found thatiNemeves look
slightly better than the discontinuous curves; they ala@tzamore compact
representation in PostScript. Figures 8 and 9 demonstatpression of the
same curve rendered at different sizes.

6 Extensions and future work

This paper describes a multiresolution representatioefapoint-interpo-
lating B-spline curves, and shows how this single represientaupports a
variety of display and editing operations in a simple anctigffit manner.
We believe that the operations described are very genedalambe readily
extended to other types of objects described by a multinéisol analysis.

There are many directions for future research, including:

Handling discontinuities. An important extension is to generalize the mul-
tiresolution curve representation and editing operationgespect discon-
tinuities of various orders that have been intentionallyced into a curve
by the designer. This extension would allow the techniqoeset applied
more readily to font design, among other applications. Qur@ach is to
try using the multiresolution analysis defined on non-umifd®-splines by
Deehlen and Lyche [10].

Sparse representationsOur algorithms have so far used ontpmplete
wavelet decompositions of the curve’s original controlisi However, in
order to support curve editing at an arbitrarily high resioln, it would be
convenient to have a mechanism in place for extending theslgavepre-
sentation to a higher level of detail in certain higher-tagon portions of
the curve than in others. One such sparse representatidit osg pruned
binary trees to keep track of the various wavelet coeffigantifferent lev-
els of refinement, in a manner very similar to the one used bynBaet al.
for representing multiresolution images [5].

Textured strokes.For illustrations, it is useful to associate other propeti
with curves, such as color, thickness, texture, and tranesieg, as demon-
strated by Hsu and Lee [17]. These quantities may be coresidextra di-
mensions in the data associated with each control pointivid¢he ma-
chinery for multiresolution editing should be applicaldestich curves. As a
preliminary test of this idea, we have extended our curviediith athick-
nessdimension. The thickness along the curve is governed byhio-t

nolle  So5

Figure 10:Two curves of varying thickness.
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nesses defined at the control points. It is possible to matify param-
eter at any level of resolution, just as one edits the positibthe curve.
Figure 10 shows curves with varying thickness. Ultimatelg, would like

to combine stroke editing with multiresolution image etiti[5], perhaps
providing a unified framework for object-oriented (“MacDrdike”) and

image-oriented (“MacPaint-like”) interactive design grams.

Surfaces.Another obvious extension of these techniques is to susfak®
a test of multiresolution surface editing, we built a suefaditor that allows
a user to modify a bicubic tensor-product B-spline surfacd 4 16] at dif-
ferent levels of detail. Figure 11 shows several manipaoitegiapplied to a
surface over 1225 control points modeling a human face. Wagh not-
ing that tensor-product surfaces are limited in the kindshafpes they can
model seamlessly. Lounsbesyal.[19] discuss a multiresolution represen-
tation for subdivision surfaces of arbitrary topology. Manf the techniques
described in this paper should extend directly to theiraues as well. In par-
ticular, fractional-level display and editing are appbéain the same way
as for curves and tensor-product surfaces. In additiorgdhgression tech-
nique for scan-converting curves might also be used foregnd simplified
versions of polyhedra within guaranteed error tolerances.

Ny
w W

Figure 11:Surface manipulation at different levels of detail. Froft e right:
original, narrow change, medium change, broad change.
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Figure 12:The B-spline scaling functions and the first four waveletewtl 3.

16 0 0 0 16 0 0 0 0 0
A Wavelets for endpoint-interpolating B-splines PloL| 5 & & o o1 1 0 o o
16 o o 8 8 0 311 2 0 0
As discussed in Section 2.1, a multiresolution analysi@mmletely deter- % o 6 oo pizs _ L o0 22 o0
mined by an initial set of scaling functiods’ and a pair of synthesis filters T TTT 0 0 6 e 2
PJ and@’ for every levelj in [1,n]. This appendix supplies these func- P2 :% 0o 310 3 0 o000 88
tions and matrices for endpoint-interpolating cubic B4sesi, and outlines o o Az o
their derivation. Figure 12 shows some examples of theseliBesgcaling 0 0 0 016 :
functions and wavelets. . e b
Initial scaling functions are given by the four cubic Beristeolynomials: ot =1 _g Q% = 2o _ié; Eg;%
0 3 2 2 3
) = [(1-w)?, 3u(l - w)?, 3P (1 - u), v ) 1 240 2064 )
The matrices?? and@” appearin Figure 13. Note th&¥ is a matrix with 2oire2 0 0 0
dimensiong2? + 3) x (271 4+ 3) whose middle columns, for > 3, are 7166160
given by vertical translates of the fourth column, shifteshah by 2 places ! 38124265 0 0
for each column. MatrixQ’ has the same structure fgr> 4, except with —33030599 333497715  _6908335 0
dimensions{Qﬂ + 3) % 2]_1. - 41383080 478112471 478112471
633094403 —881412943 —T74736797 27877
The PJ matrix is straightforward to derive from the Cox-de Boor resian l_efss’;j;jf pooaRasdz 922::3:2 16_585:;13;:0
formula [12]; it encodes how each endpoint-interpolatingine can be 137943600 ! 28124263 113830800
expressed as a linear combination of B-splines that are balide. To de- 0% = 4681957  —689203555 —689203555 4681957
rive the Q7 matrix, we use some new notation. Given two row vectors of 165532330 956324943 956324943 163532330
functionsX andY’, let[(X | Y")] be the matrix of inner productsYy, , ;). TTSR30800 38154365 ! Toroaseon
Since, by definition, scaling functions and wavelets at traeslevel; are 27877 —7T4736797 —881412943 633094403
Orthogonal, we haVe 1655323200 956224942 956224942 1655323200
[(q)J | q;]>] — [(q)J |<I>J+1>] Qi = 0 © TRIIST  osliastt 1383080
’ 0 0 —7166160 1
so the columns of)’+! span the null space ({f(qﬂ | @1 )] . We choose 28124263
a basis for this null space by finding the matf)¢*+! that has columns © © © SHires ]
with the shortest runs of non-zero coefficients; this matixresponds to i = 324762 0 0 0 )
the wavelets with minimal support. The entries of the inmedpict matrix ) )
can be computed exactly with symbolic integration; thus, flactions re- ! oseassaTr 0 0
ported in Figure 13 are exact (though ugly). —33030599 2096854390 307090 o
41383080 2989435167 19335989
633094403 711077(,17246427 ;76643465 _—1
. . . . 1655323200 1195 40668 343956 24264
B Linear-time filter-bank algorithm e 1 cosanos a1
137943600 19335989 6066
Section 2.2 notes that the obvious filter-bank decompasélgorithm for 4681957  — 157389496903 —29839177 —559
endpoint-interpolating B-spline curves tak@¢m?)-time becauset’ and 16PRRZNZ0.IZIZIBIOIEE L SRETIRTE B088
B7 are dense. However, Quak and Weyrich [25] describe an @hgorior TThsaoaes  RaoTeaTear ! 035
performing the algorithm in linear time, using a transfotimato the “dual 27877 —27809640281 —58651607 —9241

space.” The derivation of this idea is beyond the scope sfgihper; how- T | 160nARI200 442436404716 TTAAS9R6 12192
171326708 6261828

ever, for completeness, we summarize here how the lineer-silgorithm 0 T Tl S L L 1
can be implemented.

a — 1381667 —1328199 —9241

A68E9TNO393 19335989 12132

Let 77 and.J’ be the inner product matricg$®’ |q>J)] and[(\IN |‘1N)], a a 98208 088
19335989 033

respectively. Equations (1) and (2) can then be rewritten:

]_1 1 T a a —792 —5k9
I (ol — (PJ) el 19335989 8088
Ji—ipi—1 — (QJ)TIJCJ n a 0 i
SinceP’, )7, andl’ are banded matrices, the right-hand side of these equa- a a a T
tions can be computed in linear time. What remains are twaltzthagonal
systems of equations, which can also be solved in lineartisieg .U de- : ]
composition [24]. 1440 882 1:6 12 a a
882 2232 1k7hH 348 3 a
The matriceg” for ; > 3 are givenin Figure 13. Note that is a symmetric e o e
matrix with dimensiong27 + 3) x (27 4 3) whose middle columns, for . 0 A 239 2382 4832 2382
. . . . . ,723 - a a 2 240 2382 4832
j > 3, are given by vertical translates of the sixth column. Thenatrices 10080 - 27 a a a 2 240 2382
. 4 . a a a a 2 240
for ; < 3 and theJ? matrices may be found by: 0 0 0 0 2 :
= (PJ+1)TIJ+1PJ+1
J = (QJ+1)TIJ+1QJ+1

Figure 13:The synthesis filter®’ andQ’ and the inner product matrices’ .
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